- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tan, P-L (2)
-
Aalbers, J. (1)
-
Abe, K (1)
-
Abe, K. (1)
-
Agostini, F (1)
-
Ahmed_Maouloud, S. (1)
-
Alfonsi, M (1)
-
Althueser, L (1)
-
Althueser, L. (1)
-
Andrieu, B. (1)
-
Angelino, E (1)
-
Angelino, E. (1)
-
Angevaare, J R (1)
-
Angevaare, J_R (1)
-
Antochi, V C (1)
-
Antochi, V_C (1)
-
Antón_Martin, D. (1)
-
Aprile, E (1)
-
Aprile, E. (1)
-
Arneodo, F (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run.more » « less
-
Aprile, E; Abe, K; Agostini, F; Maouloud, S Ahmed; Alfonsi, M; Althueser, L; Angelino, E; Angevaare, J R; Antochi, V C; Martin, D Antón; et al (, Progress of Theoretical and Experimental Physics)Abstract A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360±60)ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fit to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove 37Ar after its injection for a low energy calibration in XENON1T. This makes the usage of 37Ar as a regular calibration source possible in the future. The online distillation can be applied to next-generation LXe TPC experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large scale detectors.more » « less
An official website of the United States government
